The Receptor-like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings
نویسندگان
چکیده
Among the myriad cues that constantly inform plant growth and development, mechanical forces are unique in that they are an intrinsic result of cellular turgor pressure and also imposed by the environment. Although the key role of mechanical forces in shaping plant architecture from the cellular level to the level of organ formation is well established, the components of the early mechanical signal transduction machinery remain to be defined at the molecular level. Here, we show that an Arabidopsis mutant lacking the receptor-like kinase FERONIA (FER) shows severely altered Ca(2+) signaling and growth responses to different forms of mechanical perturbation. Ca(2+) signals are either abolished or exhibit qualitatively different signatures in feronia (fer) mutants exposed to local touch or bending stimulation. Furthermore, mechanically induced upregulation of known touch-responsive genes is significantly decreased in fer mutants. In addition to these defects in mechanical signaling, fer mutants also exhibit growth phenotypes consistent with impaired mechanical development, including biased root skewing, an inability to penetrate hard agar layers, and abnormal growth responses to impenetrable obstacles. Finally, high-resolution kinematic analysis of root growth revealed that fer mutants show pronounced spatiotemporal fluctuations in root cell expansion profiles with a timescale of minutes. Based on these results, we propose that FER is a key regulator of mechanical Ca(2+) signaling and that FER-dependent mechanical signaling functions to regulate growth in response to external or intrinsic mechanical forces.
منابع مشابه
Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis
There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...
متن کاملGlycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis
The Arabidopsis receptor kinase FERONIA (FER) is a multifunctional regulator for plant growth and reproduction. Here we report that the female gametophyte-expressed glycosylphosphatidylinositol-anchored protein (GPI-AP) LORELEI and the seedling-expressed LRE-like GPI-AP1 (LLG1) bind to the extracellular juxtamembrane region of FER and show that this interaction is pivotal for FER function. LLG1...
متن کاملArabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملFERONIA and Her Pals: Functions and Mechanisms1[OPEN]
FERONIA and 16 closely related proteins form a distinct clade within the Arabidopsis (Arabidopsis thaliana) superfamily of receptor-like kinases (RLKs), transmembrane proteins with an extracellular domain for signal perception and a cytoplasmic domain that phosphorylates target molecules and induces cellular responses to incoming signals. Several members of this family, such as THESEUS1 and ANX...
متن کاملThe Arabidopsis kinase-associated protein phosphatase regulates adaptation to Na+ stress.
The kinase-associated protein phosphatase (KAPP) is a regulator of the receptor-like kinase (RLK) signaling pathway. Loss-of-function mutations rag1-1 (root attenuated growth1-1) and rag1-2, in the locus encoding KAPP, cause NaCl hypersensitivity in Arabidopsis thaliana. The NaCl hypersensitive phenotype exhibited by rag1 seedlings includes reduced shoot and primary root growth, root tip swelli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 24 شماره
صفحات -
تاریخ انتشار 2014